ES–348 1GR-FE ENGINE CONTROL SYSTEM – SFI SYSTEM

DESCRIPTION
Refer to DTC P2195 (See page ES-307).

<table>
<thead>
<tr>
<th>DTC No.</th>
<th>DTC Detection Conditions</th>
<th>Trouble Areas</th>
</tr>
</thead>
</table>
| P2A00 | Calculated value for air-fuel ratio (A/F) sensor response rate deterioration level is less than threshold | • Open or short in A/F sensor (bank 1, 2 sensor 1) circuit
• A/F sensor
• A/F sensor heater
• ECM |
| P2A03 | Calculated value for air-fuel ratio (A/F) sensor response rate deterioration level is less than threshold | • Open or short in A/F sensor (bank 1, 2 sensor 1) circuit
• A/F sensor
• A/F sensor heater
• ECM |

MONITOR DESCRIPTION
After engine is warmed up, the ECM performs air-fuel ratio feedback control to maintain the air-fuel ratio at the stoichiometric level. In addition, active A/F control is performed for approximately 10 seconds after preconditions are met in order to measure the A/F sensor response rate. During active A/F control, the ECM forcibly increases and decreases the injection volume a certain amount, based on the stoichiometric air-fuel ratio learned during normal air-fuel ratio control, and measures the A/F sensor response rate. The ECM receives a signal from the A/F sensor while performing active A/F control and uses it to calculate the A/F sensor response rate deterioration level.

If the value for A/F sensor response rate deterioration level is less than the threshold, the ECM interprets this as a malfunction and sets the DTC.
CONFIRMATION DRIVING PATTERN

HINT:
Performing this confirmation pattern will activate the A/F sensor response monitor.

Vehicle Speed
Between 25 and 75 mph (40 and 120 km/h)
Idling
Ignition Switch OFF
Warming up 3 minutes
Time

Air-Fuel Ratio Sensor Output
Active A/F Control
ON
OFF
A/F Sensor Output
Fuel Injection Volume
Increase
Decrease
10 Seconds
Normal
Malfunction

ON
OFF
A115363E04

A115372E45
(a) Connect an intelligent tester to the DLC3.
(b) Turn the ignition switch ON.
(c) Turn the tester ON.
(d) Clear DTCs (See page ES-38).
(e) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / MONITOR INFO / MONITOR RESULT.
(f) Check that RES RATE B1S1 and RES RATE B2S1 are INCOMPL.
(g) Start the engine and warm it up.
(h) Drive the vehicle at between 25 mph and 75 mph (40 km/h and 120 km/h) for 3 minutes. However, the vehicle should be driven at a constant speed.
(i) Check the monitor result values on an intelligent tester by selecting the following menu items: DIAGNOSIS / ENHANCED OBD II / MONITOR INFO / MONITOR RESULT / RES RATE B1S1 and RES RATE B2S1.
(j) If the values indicated on the tester do not change, perform READINESS MONITOR DRIVE PATTERN for the A/F sensor and the heated oxygen sensor (See page ES-23).

HINT:
Completion of all A/F sensor monitors is required to change the value in RES RATE B1S1 and RES RATE B2S1.
(k) Note the value of the RES RATE B1S1 and RES RATE B2S1.
(l) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / PENDING CODES.
(m) Check if any DTCs (any pending DTCs) are set.

MONITOR STRATEGY

| Related DTCs | P2A00: A/F sensor (Bank 1) slow response
P2A03: A/F sensor (Bank 2) slow response |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Sensors/Components (Main)</td>
<td>A/F sensor</td>
</tr>
<tr>
<td>Required Sensors/Components (Related)</td>
<td>Vehicle speed sensor, Crankshaft position sensor</td>
</tr>
<tr>
<td>Frequency of Operation</td>
<td>Once per driving cycle</td>
</tr>
<tr>
<td>Duration</td>
<td>10 to 15 seconds</td>
</tr>
<tr>
<td>MIL Operation</td>
<td>2 driving cycles</td>
</tr>
<tr>
<td>Sequence of Operation</td>
<td>None</td>
</tr>
</tbody>
</table>
TYPICAL ENABLING CONDITIONS

| Monitor runs whenever following DTCs not present | P0031, P0032, P0051, P0052 (A/F sensor heater - Sensor 1)
P0100 - P0103 (MAF meter)
P0110 - P0113 (IAT sensor)
P0115 - P0118 (ECT sensor)
P0120 - P0223, P2135 (TP sensor)
P0125 (Insufficient ECT for Closed Loop)
P0171, P0172 (Fuel system)
P0300 - P0306 (Misfire)
P0335 (CKP sensor)
P0340, P0341 (CMP sensor)
P0455, P0456 (EVAP system)
P0500 (VSS)
P2196, P2198 (A/F sensor - rationality) |

Active A/F control | Performing |
Active A/F control performed when following conditions met | - |
Battery voltage | 11 V or more |
Engine coolant temperature | 75°C (167°F) or more |
Idling | OFF |
Engine RPM | Less than 4,000 rpm |
A/F sensor status | Activated |
Fuel-cut | OFF |
Engine load | 10 to 70% |
Shift position | 2 or more |
Catalyst monitor | Not yet |
Intake air amount | 3 to 10.5 g/sec |

TYPICAL MALFUNCTION THRESHOLDS

| Response rate deterioration level | Less than 0.2 V |

MONITOR RESULT

Refer to CHECKING MONITOR STATUS (See page ES-20).

WIRING DIAGRAM

Refer to DTC P2195 (See page ES-312).

INSPECTION PROCEDURE

HINT:
Malfunctioning areas can be identified by performing the A/F CONTROL function provided in the ACTIVE TEST. The A/F CONTROL function can help to determine whether the Air-Fuel Ratio (A/F) sensor, Heated Oxygen (HO2) sensor and other potential trouble areas are malfunctioning.
The following instructions describe how to conduct the A/F CONTROL operation using an intelligent tester.
(1) Connect an intelligent tester to the DLC3.
(2) Start the engine and turn the tester ON.
(3) Warm up the engine at an engine speed of 2,500 rpm for approximately 90 seconds.
(4) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.
(5) Perform the A/F CONTROL operation with the engine in an idling condition (press the RIGHT or LEFT button to change the fuel injection volume).
(6) Monitor the voltage outputs of the A/F and HO2 sensors (AFS B1S1 and O2S B1S2 or AFS B2S1 and O2S B2S2) displayed on the tester.
HINT:
• The A/F CONTROL operation lowers the fuel injection volume by 12.5 % or increases the injection volume by 25 %.
• Each sensor reacts in accordance with increases and decreases in the fuel injection volume.

Standard

<table>
<thead>
<tr>
<th>Tester Display (Sensor)</th>
<th>Injection Volumes</th>
<th>Status</th>
<th>Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFS B1S1 or AFS B2S1 (A/F)</td>
<td>+25 %</td>
<td>Rich</td>
<td>Less than 3.0</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>Lean</td>
<td>More than 3.35</td>
</tr>
<tr>
<td>O2S B1S2 or O2S B2S2 (HO2)</td>
<td>+25 %</td>
<td>Rich</td>
<td>More than 0.55</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>Lean</td>
<td>Less than 0.4</td>
</tr>
</tbody>
</table>

NOTICE:
The Air-Fuel Ratio (A/F) sensor has an output delay of a few seconds and the Heated Oxygen (HO2) sensor has a maximum output delay of approximately 20 seconds.

<table>
<thead>
<tr>
<th>Case</th>
<th>A/F Sensor (Sensor 1)</th>
<th>HO2 Sensor (Sensor 2)</th>
<th>Main Suspected Trouble Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injection volume +25 %</td>
<td>Injection volume +25 %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>-12.5 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage More than 3.35 V</td>
<td>Output voltage More than 0.55 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 3.0 V</td>
<td>Less than 0.4 V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Injection volume +25 %</td>
<td>Injection volume +25 %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>-12.5 %</td>
<td>A/F sensor</td>
</tr>
<tr>
<td></td>
<td>Output voltage Almost no reaction</td>
<td>Output voltage Almost no reaction</td>
<td>A/F sensor heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/F sensor circuit</td>
</tr>
<tr>
<td>3</td>
<td>Injection volume +25 %</td>
<td>Injection volume +25 %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>-12.5 %</td>
<td>HO2 sensor</td>
</tr>
<tr>
<td></td>
<td>Output voltage More than 3.35 V</td>
<td>Output voltage Almost no reaction</td>
<td>HO2 sensor heater</td>
</tr>
<tr>
<td></td>
<td>Less than 3.0 V</td>
<td></td>
<td>HO2 sensor circuit</td>
</tr>
<tr>
<td>4</td>
<td>Injection volume +25 %</td>
<td>Injection volume +25 %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-12.5 %</td>
<td>-12.5 %</td>
<td>Injector</td>
</tr>
<tr>
<td></td>
<td>Output voltage Almost no reaction</td>
<td>Output voltage Almost no reaction</td>
<td>Fuel pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gas leakage from exhaust system (Air-fuel ratio extremely lean or rich)</td>
</tr>
</tbody>
</table>

• To display the graph, select the following menu items on the tester: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL / USER DATA / AFS B1S1 and O2S B1S2 or AFS B2S1 and O2S B2S2, and press the YES button and then the ENTER button followed by the F4 button.
• Following the A/F CONTROL procedure enables technicians to check and graph the voltage outputs of both the A/F and HO2 sensors.

HINT:
• DTC P2A00 or P2A03 may be also set, when the air-fuel ratio is stuck rich or lean.
• A low A/F sensor voltage could be caused by a rich air-fuel mixture. Check for conditions that would cause the engine to run rich.
• A high A/F sensor voltage could be caused by a lean air-fuel mixture. Check for conditions that would cause the engine to run lean.
• Read freeze frame data using an intelligent tester. Freeze frame data record the engine condition when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data, from the time the malfunction occurred.

1 CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P2A00 AND/OR P2A03)

(a) Connect an intelligent tester to the DLC3.
(b) Turn the ignition switch ON.
(c) Turn the tester ON.
(d) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
(e) Read DTCs.

Result

<table>
<thead>
<tr>
<th>Display (DTC Output)</th>
<th>Proceed To</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2A00 and/or P2A03</td>
<td>A</td>
</tr>
<tr>
<td>P2A00 and/or P2A03 and other DTCs</td>
<td>B</td>
</tr>
</tbody>
</table>

HINT: If any DTCs other than P2A00 or P2A03 are output, troubleshoot those DTCs first.

B GO TO DTC CHART (See page ES-57)

2 INSPECT AIR FUEL RATIO SENSOR (HEATER RESISTANCE) (See page ES-85)

NG REPLACE AIR FUEL RATIO SENSOR (See page EC-21)

OK

3 CHECK HARNESS AND CONNECTOR (A/F SENSOR - ECM) (See page ES-325)

NG REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

4 PERFORM CONFIRMATION DRIVING PATTERN
5 CHECK WHETHER DTC OUTPUT RECURS (DTC P2A00 AND/OR P2A03)

(a) Connect an intelligent tester to the DLC3.
(b) Turn the ignition switch ON and turn the tester ON.
(c) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
(d) Read DTCs.

Result

<table>
<thead>
<tr>
<th>Display (DTC Output)</th>
<th>Proceed To</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2A00 and/or P2A03</td>
<td>A</td>
</tr>
<tr>
<td>No output</td>
<td>B</td>
</tr>
</tbody>
</table>

B CHECK FOR INTERMITTENT PROBLEMS

A

6 REPLACE AIR FUEL RATIO SENSOR

Replace the air fuel ratio sensor (See page EC-21).

NEXT

7 PERFORM CONFIRMATION DRIVING PATTERN

NEXT

8 CHECK WHETHER DTC OUTPUT RECURS (DTC P2A00 AND/OR P2A03)

(a) Connect an intelligent tester to the DLC3.
(b) Turn the ignition switch ON and turn the tester ON.
(c) Select the following menu items: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
(d) Read DTCs.

Result

<table>
<thead>
<tr>
<th>Display (DTC Output)</th>
<th>Proceed To</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output</td>
<td>A</td>
</tr>
<tr>
<td>P2A00 and/or P2A03</td>
<td>B</td>
</tr>
</tbody>
</table>

B CHECK EXTREMELY RICH OR LEAN ACTUAL AIR FUEL RATIO (REFER TO DTC P0171 PROCEDURE)

A

END